Name: \qquad

TAM 210/211 Written Assignment 3 (due on Friday, Feb $3^{\text {rd }}$)

Romeo tries to reach Juliet by climbing with constant velocity up the rope which is knotted at point A, as illustrated below. Assume Romeo has a mass, m.

1. Determine the magnitude of the force in the all rope segments. Your answers should be a function of mass, m.
2. Any of the ropes will break if the force exceeds 1 kN . What is the largest mass that Romeo can be and not break the rope? Explain.
3. Repeat the analysis above ($\# 1 \& \# 2$) if we maintain the position of points A and B , but change the position vector of point C with respect to point A such that $\mathbf{r}_{A C}=1.5 \mathbf{i}+0.5 \mathbf{j} \mathrm{~m}$. Draw conclusions.
4. Suppose Romeo's friend, Mercutio, were to come along as well and they're combined weight just barely exceeded the maximum you found in problem $\# 2$. What single alteration to the system in \#2 (other than that mentioned in \#3) might you suggest that would allow for both of them to climb the rope simultaneously?

